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On a class of inhomogeneous Ising quantum chains 
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Abstract. The Hamiltonian of an king quantum chain with a square-root-increasing transverse 
magnetic field is exactly diagonalized and its spectrum determined by the zeros of Charlier 
polynomials. We compute also the magnetization at zem temperature as a function of the 
position in closed form. 

Introduction 

Inhomogeneous bidimensional systems have attracted renewed interest in  recent^ years as 
they have been shown to have unusual critical behaviour [I]. A standard microscopic 
modelling of such systems is provided by Ising models with non-homogeneous couplings 
which simulate the presence of defects in the bulk; the parameters of the defect become 
parameters in critical exponents [2]. 

Inhomogeneous Ising models are frequently studied in the so-called ‘strong anisotropic’ 
limit, in which a Hamiltonian operator for an inhomogeneous quantum spin chain emerges 
in the foni  

where N + 1 is the number of sites of the chain, U;, 0;: are Pauli matrices at site n, and p. 
is the variable magnetic field and b, the inhomogeneous coupling constant. 

The homogeneous version of (1) was studied long ago [3], and inhomogeneous chains 
are of recent concern 111. 

There is an interesting context in which HN of (1) occurs as a geometrical effect on 
homogeneous Ising models bounded by a contour when one takes the ‘strong anisotropic’ 
limit of the lattice. 

This is the case of a comer of an king model limited by two straight lines meeting at 
the origin of a coordinate system. Then one obtains an HN with [4] 

pn = 2n and A, = A(2n + 1). (2) 
If one takes the boundary as a parabola of equation y 2  = Cx, the resulting HN is [l] 

p,, = G and A. = i&Ti. (3) 
More generally for a boundary of equation y = Cx‘, one expects the following 

coefficients [5]: 

f in  = m + and An = A(2n + 1 + p)= (4) 
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where p is a constant. 
An alternative way of obtaining HN would be via the combining of geometrical and 

physical effects by taking a comer Ising model in the presence of an extended defect [6] of 
a precise type. This yields 

pn = 2n and An = A(2n + 1 + y )  (5 ) 
where y describes the 'strength' of the defect. 

pn and A.. 

field for an XY quantum chain with the Hamiltonian 

Thus the HN of interest here exhibits smooth and parallel growth behaviour for both 

In this paper, we follow an idea of Smith 171 who considers only a growing magnetic 

with pLn = Rn + H ,  where R and H are constant, and proposed studying an king quantum 
chain with a square-root-growing magnetic field, i.e. 

Physically this Hamiltonian may be obtained from the 'strong anisotropic' limit of an 
king model bounded by a parabola as in [l], but containing a Hilhorst-Van Leuween 
horizontal inhomogeneous coupling of the form A(n + 1)-'l2 181. Thus this is another 
instance of combined geometrical and physical effects in the bulk. This increasing magnetic 
field tends to line up the spins of the bulk as one goes away from the origin; one expects 
that the magnetization grows as function of the distance. Such behaviour has been already 
found in the work of Smith [7]. 

1. The method of Lieb, Schultz and Mattis 

A general feature of the Hamiltonians HN is that they may be diagonalized by the method 
of Lieb, Schultz and Mattis [9]. In their seminal work, they showed that the HN may 
be expressed as a bilinear form in fermion variables c:, c, through the Jordan-Wigner 
transformation. The fermionic form is in turn diagonalized by a Bogoliubov-Valatin 
transformation, which gives the normal-mode fermions r$, qr and their singlemode 
eigenenergy EW. 

Following this standard procedure, HN appears now as 
N - 1  N-1 

HN = - &(ZC,'C, - 1) - A E@,' - C.)(C;+, + c,+I). (8) 
"=I n=O 

This is a bilinear fermionic form of the type 

HN = ~ { c ~ A , , c .  + i(cLB,,c,' + HC)} + constant (9) 

in which A ( B )  is a real symmetric (antisymmetric) tridiagonal (N  + 1) x ( N  + 1) matrix. 
To diagonalize H N ,  one introduces the normal-mode fermion operators q z ,  qk through 

the relations 

m,n 

N N 

n: + q k  = E h z ( k ) ( c ;  + Cm) 7: - r lk  =~c @ m ( k ) ( C , f  - Cm)  (10) 
m=O m=O 
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and requires that the conditions 
N N 

C ( A n m  - Bnm)@m(k) = & k $ n ( k )  C ( A n m  + Bnm)$m(k)  (11) 

HN = x & k f l : f l y  +constant. (12) 

(A + B ) ( A  - B)@r(k) = &(k) 

m=O m a  

be obeyed by the coefficients &(k) and qm.,(k) so that HN takes the diagonal form 
N 

k=O 

The conditions (11)  state merely that $(k) and q ( k )  are eigenvectors of a coupled matrix 
eigenvalue of the problem, which, for practical purposes may be reformulated as 

( A  - B ) ( A  + B ) W )  = $ $ ( k )  (13) 
together with the normalization conditions 

2. Diagonalization with Charlier polynomials 

The structure of the Hamiltonian (7) is such that the matrices (A T B ) ( A  rk B )  are real 
symmetric tridiagonal ( N  + 1)  x ( N  + 1) matrices. The first equation of (13) may be in 
fact rewritten as a three-way recursion relation for the &(k): 

~ & X h ( k )  + (n + ~ ' ) @ , , ( k )  + ~ & & + ~ ( k j  = & ~ k )  (15) 

with &: = (2wk)' and n = 2,3,. . . , N - 1. For n = 0, 1 and N we have the boundary 
conditions 

0 x = w,z$o(k) (16) 
(1 + A'Mi (k )  + A M k )  = ~ Z $ I  (k )  (17) 

AV"Z+L(~) t A * M ~ )  = ~ & t v ( k ) .  (18) 

. \&h- l (W+ ( n + A ' ) @ " ( k ) + A ~ @ " + ~ ( k )  =0,2@,,(k) (19) 

A'@o(k) + fiA@i(k) = &h(k)  

d ? F i ~ @ N - z ( k )  + ( N  - I + h')@N-i(k) = w;@N--l(k) 
0 x @N(k) ='$@N(k).  (22) 

Similarly the second equation of (13) is a three-way recursion for the @n(k) with three 
additional boundary conditions: 

(20) 
(21) 

Relations (15) and (19) may be transformed using the substitutions 

(Q(k )  and P ( k )  are normalization constants to be determined later) into the following 
relations: 
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which are typical recursion relations for Charlier polynomials [IO]: C.(n, A’). Hence we 
have 

qn(k) C.-~(O,” - 1,  A’) pn(k) C,(O~, A’). (25) 

The Charlier polynomials C.(x, A’) have the explicit expression 

They enjoy a ‘duality’ symmeiry for x = k, an integer: 

(-l)kC,(k, A’) = (-1)”ck(n, A’) 

and are orthogonal with respect to the Poisson measure: 

for m, n = 0 ,1 ,2 , .  . . ,CO. Combining (27) and (28), one obtains the so-called dual 
orthogonality relation of Eagleson [l 11, which holds also for Gottlieb and Hahn polynomials: 

3. Determination of the spectrum in the limit N -t 00 

First of all, there exists a zero mode with 00 = 0. Equations (14)-(22) yield readily the 
solutions 

@n(Q x &.o and $n@) 8N.n. (30) 

(31) 

The rest ofthe spectrum may be determined by the end of the chain boundary condition 
(see equation (18)) or its equivalent: 

2 N C N - , ( O J ~  - 1,A’) + A’c~(w,  - 1, A’) = 0. 

Using the asymptotic form of C.(x, A’) given by Gottlieb [12] for n -4 CO: 

in (31) we obtain 

which, in view of the poles of the r function, yields the spectrum in the limit N -+ CO: 

&k = -2& k = l , 2  ,..., W. (34) 
The negative sign is chosen in order to agree with the difference equation satisfied by 

The boundary condition for @“(k)  given in equation (21) may be replaced, using equation 
the Charlier polynomials (see equation (40)). 

(19), by the simpler one for k # 0 
&A$,v(k) = 0 (35) 

or equivalently, in the N -+ CO limit: 
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Thus the spectrum found in equation (34) is perfectly consistent with equation (36) in the 
thermodynamic limit of the chain. 

Lastly we may use the Charlier polynomial orthogonality to compute the constants Q ( k )  
and P(k)  of the normalized wavefunctions &(k) and @"(k): 

A completeness relation for @"(k), which is defined for sites n >> 1, is derived in the form 

with n,  m = 0, I. 2, . . . , CO. Since h ( k )  = &+I ( k  + I), we also have 

for n,m^= 0, 1,2, .. . , W. Recall that @"(O) = a b .  

equation for Charlier polynomials 1131: 
Equations (13) combined with the dual symmetry relation (27) reduce to the difference 

(40) 
n 
12 

As in the past, many of the inhomogeneous one-dimensional Hamiltonians of the 
free-fermion class (Ising or XY types) 1141 are diagonalized with the use of special 
orthogonal polynomials. But only in this case and in the case of an XX-chain with 
linearly increasing coupling constant and magnetic field does one get the two classes of 
dual symmehic polynomials: the Charlier and Gottlieb polynomials. In both cases the 
spectrum is detegnined by the zeros of these polynomials. 

4. Magnetization profile at T = 0 K 

Following Smith [71, we compute the magnetization profile at temperature T (or p = I /kT):  

(41) 
Inverting (IO) by using the orthogonality relations for &(k) and @k(k),  we express the 

C,(k + 1, A') - C,(k, A') = --Cn-l(k, A'). 

M n ( B )  = (c,+cm - In). 
c,' (c,) in terms of the normal-mode fermions ( V k )  (for m # 0): 

Then performing the thermal averaging over the q:, q k :  

Here in the limit of an infinitely long chain the EW = 2ak, whereby aIk = -& with 
k = 1,2, >, 00. In general because of the Fermi distribution it is difficult to evaluate 
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(c,icm) exactly. However, for the given choice of energy sign when p + 00 (T + 0), 
we have a simpler expression: 

m 
M z ( B  -+ 00) x $ m ( k ) + m ( k ) .  (44) 

k=1 

Using the recursion relation (13) or alternatively (40): 

A+m-I(k) + f i + m ( k )  = f i$m(k)  

we obtain 
(45) 

Using a bilinear generating function given by Meixner 1131, we may write 
m 

(47) 
which, despite appearances, is symmetric with respect to the exchange of n and m. 

Thus by contour integration around the origin we may extract an identity of the type 

+ n ( k  Az)+m(k, A') 

We now introduce JonquiBre's function: 

and deduce the representation of a kernel in n and m: 

which will be used in computing the magnetization M,(m) at zero temperature, i.e. 

Mm (B = 00) 

= 2irr $:smF (', k) exp (-: (s - 5 ) )  
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with the parameter 

I = - -  (1 - s)2*z, ~. 
S 

In particular, for m = 1, the first site Mt(B = co) can be evaluated as 

because the first two polynomials are simple: 
k 

Cl(k) = -1 + - 
12. 

Co(k, A') = 1 and 

At the origin the equations determining CO' and co are 

since Gn(0) = 40 and since the completeness relation for the $n(k) is valid down to site 
n = 0. Using 

we may compute (cofco) at T = 0 and find the magnetization at the origin: 

As the magnetic field is zero at the origin and as Autu; acts as a spin-flip disordering 
operator, the first spin tends to be flipped more strongly than the second one which is already 
under the influence of the magnetic field. As a result the magnetization is negative at the 
origin but becomes positive at the next site. 

Along the chain, the magnetic field will become stronger and stronger whereas the 
disordering retains a constant strength h; thus it is expected that M, will increase steadily 
and for n + 03 will behave as the magnetization of independent spins in the z-direction. 

5. Concluding remarks 

The solvability of this king Hamiltonian reveals the versatility of free-fermion systems 
which are somehow related to a very large class of orthogonal polynomials hitherto unrelated 
to physical problems (e.g. Meixner, Meixner-Pollaczek, and Carlitz polynomials). 

Performing a high-low-temperature duality transformation, one may end up considering 
the dual H; of HN:  

with constant magnetic field and square-root-increasing coupling constant. 
analysis shows that the three-way recursions for $5;(k) and +;(k) are 

The same 

h m & , ( k )  + (A* + n - i)@;(k) + ~d%;+, (k)  = m & w )  

1-& (Q + (A2 + n)+:(k) + A&@;+,(k) = ~ & J k ) .  
(59) 
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By identification with equations (15) and (19) we get 

*;@) = @ n W  @:,*(k) = @"-l(w. (60) 

This study suggests therefore that one should investigate to what extent other orthogonal 
Hence the dual chain is also solvable with Charlier polynomials. 

polynomials may be related to other free-fermion systems. 
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